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A Theoretical Study of the 
Hard - Sphere FI u id - Sol id I nterface 
II. Test of an Alternative Variational Form 

DAVID W. OXTOBY and WILLIAM E. McMULLEN 
The Department of Chemistry and the James Franck institute, 
The University of Chicago, Chicago, IL 60637, U.S.A. 

(Received 20 October 1987) 

We examine the hard-sphere fluid-solid interface using a form for the inhomogeneous 
density that differs significantly from those in our previous paper. As before, our 
approach avoids the square-gradient approximation. We present results for the 11 1 I ]  
interface which qualitatively support our earlier findings. While the new density profile 
closely resembles those observed in computer simulations of Lennard-Jones systems, the 
surface free energy calculated from this ansatz is almost 2.5 times as large as the earlier 
estimates. 

Key Words: Coexistence, grand potential, inhomogeneous density, freezing. 

I INTRODUCTION 

Much current research' has focused on the phenomenon of hard-sphere 
freezing. This interest stems from successes of density functional de- 
scriptions of freezing, the availability of extensive simulation dataZ to 
compare with the theoretical predictions, and the existence of accurate 
approximation schemes for obtaining the hard-sphere properties. Con- 
siderably less research has been directed toward understanding the 
fluid-solid interface of this system. Contrary to hard-sphere freezing, 
convincing simulations of the interface have not yet been published. 
Recently, however, two theoretical papers3v4 on the subject have 
appeared, both based on the inhomogeneous density functional formal- 
ism. The present discussion supplements our earlier work3 (we will refer 
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98 D. W. OXTOBY A N D  W. E. McMULLEN 

to this as paper I). We submit it as additional evidence of several of our 
previous findings, and as a test of the theory's sensitivity to the 
variational form chosen for the density. 

The present paper is not a self-contained discussion of either hard- 
sphere interfaces or freezing, and we refer the reader to I and the 
references cited there for the theoretical foundations. We introduce our 
ansatz for the inhomogeneous density in Section 11, and use it to 
estimate the surface free energy of the [ 1 1 11 interface. After tabulating 
and discussing our numerical results in Sections I11 and IV, we end the 
paper with a few brief conclusions. 

II ANSATZ FOR THE DENSITY 

The grand potential of an inhomogeneous system includes contribu- 
tions from interfaces as well as from the bulk, coexisting phases. When 
two phases coexist, the contributions per unit volume from either bulk 
phase are equal. The difference between the total grand potential and 
that of an equal volume of one of the homogeneous phases is the surface - 
free energy. The grand potential difference, 

P(%hornogeneous - %quid) = PAQ[dr)l 

= - 1' drlAp(rl) + 

Adr1)AP(r2)AP(r3)- ... 

is variational with respect to the nonuniform density, p(r), subject to the 
boundary conditions (applicable to a planar interface), 

p(r> P O  = Pliquid, - co, 
and 

dr) -+ Psolid(r)? --* O0. 

The minimum value of the functional is the free energy due to the 
interface of area A,  PysLA, in units of kT. In Eq. (l), Ap(r) = p(r) - po, 
and c(r12), d3)(rI2,  r13), . . . . are two-, three-, etc. body direct correlation 
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HARD-SPHERE FLUID-SOLID INTERFACE 99 

functions (dcf's) of the liquid phase. We know little about the higher- 
order dcf's and approximate Eq. (1) by 

where 

and po(z) is the fractional difference between the local and bulk-liquid 
number densities. As z -+ co, 

As discussed previously, we locate the transition density using the 
superposed Gaussians 

(3) Psolid(r) = ( a / ~ ) ~ "  1 ~ X P C  - a  I r - Ri I 2I 
1 

for the homogeneous solid, and the coexistence condition, 

PAC? = 0. (4) 

The density of the homogeneous solid can be represented as the Fourier 
sum, 

Psolid(r) = P O  1 + C ~q exp(iq * r> . ( 5 )  

To account for variations in the density through the interface, we write 

(6 )  

L 1 
1 [ q  

d r )  = Po 1 + 1 P q ( 4  exp(iq * r) 

with 

pq(z) -+ 0, 

P&) -+ Pq, -+ 00, 

z -P - CO 

and 
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We assume the variational forms 
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Fourier inversion of Eqs (3) and (5) then gives 

= (1 + exp( - q2/4a), q f 0. (9) 

Let a equal the lattice constant in the bulk solid and ql, the first 
nonzero set of reciprocal lattice vectors. Substituting Eq. (9) into 
Eq. (S), using q1 = 2nn/a$, and solving for a(z), we find 

9 (10) 
a 

a(z) = 
aa2 
3n 1 + ln[l + exp( -2y1(z - zl))] 

We vary the density through the interface in the following way: Far 
from the interface, in the bulk solid, we have a(z) + u and po(z) + po .  
Let d denote the spacing between bulk-solid lattice planes parallel to 
the interface. Upon approaching the interface, the local density drops to 

PoCl + PO(Z)l. 

We allow the lattice to expand only in the z direction so that 

d(z) = 4 1  + PO(Z)l. ( 1  1) 

Starting with a plane far into the bulk solid, with z-coordinate z (N) ,  we 
determine the positions of planes nearer the interface using 

N 

z(i) = z ( N )  - d ( j ) .  (12) 
j = i +  1 

Finally, hard spheres associated with the general ith lattice plane are 
distributed about their lattice sites according to 

pij(r) = ( ~ r / n ) ~ ’ ~  exp[ -ai(r - Rj)2], (13) 

where 

‘xi = u(di), 

and j refers to an atom within the plane. 
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HARD-SPHERE FLUID-SOLID INTERFACE 101 

The ansatz just outlined preserves the Gaussian character of the 
density about each site, and simplifies greatly the calculation of the 
nonlocal integral in Eq. (2),  

c c  

If we use the Percus-kevick direct correlation function for hard 
spheres, this integral can be expressed analytically in terms of repeated 
integrals of the error function5 summed over lattice sites. The ideal 
entropy functional in Eq. (2), 

P(rl> I’ = drlp(rl) In ~ s Po 

is evaluated numerically, while the other two contributions to Eq. (2) 
are straightforward to evaluate. We then minimize pAQ with respect to 
the four parameters y o ,  zo,  yl, and z1 to obtain the approximate surface 
free energy per unit area, ysL.  Note that the square-gradient approxima- 
tion has not been invoked in this calculation. 

Ill RESULTS 

At coexistence, the hard-sphere freezing parameters are3 

p o  = 0.1436465, 
O! = 373.3089, 

and 

qo = n/6p0a3 = 0.515702. 

As a check on our algebra, we have arrived at the same results using 
a(z) = a and ,uo(z) = po. Consider first the one-parameter variation 
obtained using the constraints z1 = zo = 0, and yo = yl. For the [ l l l ]  
interface, we find 

y o  = 0.7820- 

and 

ysL = 4.34 kT/02. 
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102 D. W. OXTOBY AND W. E. McMULLEN 

The full four-parameter variation reduces ysL by only about eight 
percent and yields: 

y o  = 0.8720-', 
y1 = 0.9050-', 
zo = 0.8840, 
z1 = 0.0320, 

and 

ysL = 4.00 k T / d .  

The latter value of the surface free energy listed here is almost 2.5 times 
as large as the best estimate reported in paper I. 

IV DISCUSSION 

In Figure 1, we plot the averaged density profile, 

Figure 1 
described in the present work. 

Density profile at the [ I l l ]  interface based on the four-parameter variation 
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HARD-SPHERE FLUID-SOLID INTERFACE 103 

through the interface. For comparison, in Figure 2, we present a similar 
plot based on the four-parameter variation of the density in paper I. 
Interestingly, the profile in Figure 1 looks more reasonable than that of 
Figure 2. Not only do the oscillations of the former broaden on the 
liquid side of the interface, but the spacing between widens. Broughton 
and Abraham6 have observed such widening in their simulations of the 
[111] interface of Lennard-Jones atoms. 

Nevertheless, as noted above, the paper I trial density, which uses a 
linear combination of bulk liquid and bulk solid densities, provides the 
lower estimate of the surface free energy. To facilitate discussion, we 
restate it here: 

d r )  = C1 - S~(Z)IP~ + fi(Z)P,odr), (18) 
where 

J ( z )  = f [ l  + tanh yi(z - zi)]; i = 1,2. 

The reasons that Eq. (18) yields the lower ysL are not entirely clear to 
us. We note that the ansatz detailed in the present paper allows spheres 
in the interfacial region to relax from their bulk-solid positions only in 
the z direction. In the two directions parallel to the interface, the 
spheres are localized about their solid-phase lattice sites. The present 
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Figure 2 Same as Figure 1 but for the ansatz and four-parameter variation of paper I. 
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104 D. W. OXTOBY AND W. E. McMULLEN 

ansatz forces the spheres near the interface to assume an asymmetric 
structure. Because the equilibrium solid and liquid are both isotropic, 
we might conjecture that the asymmetry makes rather large local 
contributions to ysL.  Certainly we would expect relaxation in the x and 
y directions too, perhaps in a way that mitigates the stretching along z .  
Accounting for this might reduce ysL  somewhat. Notice that the paper I 
ansatz does not provide for any relaxation, but it does allow the density 
to remain isotropic through the interface. 

A number of similarities exist between the present results and the 
previous ones despite their quantitative differences. Most obviously, 
both treatments result in a rather narrow interface. This suggests that a 
square-gradient approach to the nonlocal integral, Eq. (1 5),  might not 
prove reasonable. As in paper I, however, a square-gradient treatment 
yields good agreement with the results of the full nonlocal integration. 
Using Eq. (10) for a(z), Eq. (9) for p,(z), and Eq. ( 6 )  for the density, but 
regarding a(z) as a continuous variable, we find y o  = 1.70a-' and 
ysL = 3.74kT/aZ at the square-gradient level. This agrees well with the 
one-parameter results quoted above given that the direct integration 
assumes discrete values of a(z) instead of continuous ones. As explained 
in paper I, we cannot relax the constraint y o  = yl, which limits the 
accuracy of the square-gradient treatment. A number of other problems 
may arise when more highly parameterized forms are attempted for the 
inhomogeneous density. In the present application, it appears that the 
density profile is not so sharp that the square-gradient theory becomes 
meaningless, and the method serves as a useful tool for obtaining 
qualitative information about the interface. 

Another noteworthy feature of the present results is that zo is 
significantly more positive than zl, indicating that the average density 
change is shifted relative to the structure change. Thus, in moving from 
bulk liquid toward the interface, one first encounters a structured 
region with density close to that of the liquid, and only later does the 
density increase to its bulk solid value. This feature, which was also seen 
in earlier, more approximate models (see Figures 2 and 3 of Ref. [7]), 
appears to be a general property of the crystal-melt interface. 

After this work was completed, a different but related calculation of 
the hard-sphere interface was presented by C ~ r t i n . ~  This work used a 
different density functional and a different ansatz for the density 
variation through the interface. The surface free energies obtained were 
lower than those in paper I, but the interfacial widths were comparable. 
Curtin includes a variational parameter v in his ansatz which, in rough 
terms, would correspond to a continuous variation from no broadening 
of peaks (v = 0), as in our paper I, to quasi-harmonic broadening of 
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HARD-SPHERE FLUID-SOLID INTERFACE 105 

peaks (v = l), as in the present paper. Curtin finds the lowest free 
energy near v = 0.25, a result that is consistent with our observation of 
a lower free energy in paper I than in this work. It is possible that some 
variational combination of the ansatz from I and the present one would 
give a lower surface free energy as well as a more realistic density 
profile. 

V SUMMARY AND CONCLUSIONS 

While the surface free energies calculated here are not as low as those 
presented earlier, we do obtain agreement between the qualitative 
features of the old and new treatments. The interface consists of only a 
few monolayers in opposition to the Cahn' picture. Despite this finding, 
we again find that a square-gradient approach to the nonlocal part of 
the grand potential provides reasonable results. 

The profile that we obtain in our four-parameter variation appears 
quite physical and looks similar to those observed in molecular 
dynamics simulations of Lennard-Jones atoms. If hard-spheres behave 
similarly, then we could probably arrive at a lower estimate of ysL than 
that determined in paper I by allowing the separation between lattice 
sites to change in the interfacial region. We conjectured that relaxation 
in all three directions-not just the direction of the interface-might be 
important. It appears that the numerical results are quite sensitive to 
the form of the trial density. 
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